快捷搜索:  

什么是刚化原理 玻璃化学钢化原理

玻璃化学钢化原理

化学钢化玻璃是将玻璃置于熔融的碱盐中,使玻璃表层中的离子与熔盐中的离子交换,由于交换后的体积变化,在玻璃的两表面形成压应力,内部形成张应力,从而达到提高玻璃强度的效果。化学钢化玻璃强度高、热稳定性好、表面不变形、可做适当切裁处理、无爆开现象。
化学钢化玻璃其实是一种预应力玻璃,为提高玻璃的强度,通常使用化学或物理的方法,在玻璃表面形成压应力,玻璃承受外力时首先抵消表层应力,从而提高了承载能力,增强玻璃自身抗风压性,寒暑性,冲击性等。
二、化学钢化原理是什么

化学钢化玻璃是采用低温离子交换工艺制造的,所谓低温系是指交换温度不高于玻璃转变温度的范围内,是相对于高温离子交换工艺在转变温度以上,软化点以下的温度范围而言。低温离子交换工艺的简单原理是在400℃左右的碱盐溶液中,使玻璃表层中半径较小的离子与溶液中半径非常大的离子交换,比如玻璃中的锂离子与溶液中的钾或钠离子交换,玻璃中的钠离子与溶液中的钾离子交换,利用碱离子体积上的差别在玻璃表层形成嵌挤压应力。大离子挤嵌进玻璃表层的数量与表层压应力成正比,所以离子交换的数量与交换的表层高层度是增效果好果的关键指标。
离子交换钢化玻璃与物理钢化玻璃的应力分布不同,前者表面层的压应力厚度较小,与其平衡的内部拉应力不大,这是化学钢化玻璃的内部拉应力层达到破坏时也不像物理钢化玻璃那样碎成小片的原因。由于离子交换层较薄,所以化学钢化玻璃方法用于增强薄玻璃效果显著,对厚玻璃的增效果好果不甚明显,特别适合增强2~4mm厚的玻璃。

钢化玻璃的制造原理

热钢化原理通过加入,然后通过介质急速冷却,内层和表层产生了巨大的温差,形成温度阶梯。由此产生的应力由于玻璃还处于粘滞流动状态而被松弛。

当玻璃的温度梯度逐渐消失,原松弛的应力逐步转为永久应造成了玻璃表面有一层均匀分布的压应力层。当退火玻璃受载弯曲时,受力面为压应力。当钢化玻璃受载弯曲,退火玻璃强度低于钢化玻璃。同理,当钢化玻璃骤冷时,表面产生的张应力与钢化玻璃表面原先存在的压应力相抵偿,因而钢化玻璃的热稳定性大大提高。

钢化玻璃中应力的分布是钢化玻璃的两个表面为压应力,板芯层处于张应力,在玻璃厚度上应力分布类似抛物线。玻璃厚度的中央是抛物线的顶点,即张应力最大处;两侧接近玻璃两表面处是压应力;零应力面大约位于厚度的1/3处。

通过分析钢化急冷的物理过程,可知钢化玻璃表面张力和内部的最大张应力在数值上有粗略的比例关系,即张应力是压应力的1/2~1/3。国内厂家一般将钢化玻璃表面张力设定在100MPa左右,实际情况可能更高一些。钢化玻璃自身的张应力约为32MPa~46MPa,玻璃的抗张强度是59MPa~62MPa,只要硫化镍膨胀产生的张力在30MPa,则足以引发自爆。若降低其表面应力,相应地会降低钢化玻璃本身自有的张应力,从而有助于减少自爆的发生。

扩展资料:

钢化玻璃的缺点:

1 .钢化后的玻璃不能再进行切割,和加工,只能在钢化前就对玻璃进行加工至需要的形状,再进行钢化处理。

2 .钢化玻璃强度虽然比普通玻璃强,但是钢化玻璃有自爆(自己破裂)的可能性,而普通玻璃不存在自爆的可能性。

3 .钢化玻璃的表面会存在凹凸不平的现象(风斑),有轻微的厚度变薄。变薄的原因是因为玻璃在热熔软化后,在经过强风力使其快速冷却,使其玻璃内部晶体间隙变小,压力变大,所以玻璃在钢化后要比在钢化前要薄。一般情况下4~6mm玻璃在钢化后变薄0.2~0.8mm,8~20mm玻璃在钢化后变薄0.9~1.8mm。具体程度要根据设备来决定,这也是钢化玻璃不能做镜面的原因。

4.通过钢化炉(物理钢化)后的建筑用的平板玻璃,一般都会有变形,变形程度由设备与技术人员工艺决定。在一定程度上,影响了装饰效果(特殊需要除外)。

参考资料来源:百度百科——热钢化原理

制造钢化玻璃的原理?

工艺过程: 钢化玻璃是将玻璃加热到接近软化化温度(这时处于粘性流动状态)——这个温度范围我们称为钢化温度范围(620℃—640℃), 保温一定时间,然后骤冷而成的,下面简单叙述钢化玻璃在加热和骤冷过程中的温度变化及应力形成过程。

a. 开始加热阶段: 玻璃片由室温进入钢化炉加热,由于玻璃是热的不良导体,所以此时内层温度低,外层温度高,外层开始膨胀,内层未膨胀,所以此时外 层的膨胀受到内层的抑制表面产生了暂时的压应力,中心层为张应力,由于玻璃的抗压缩度高,所以虽然快速加热,玻璃片也不破碎。 

注:从这里可以了解到玻璃一进炉,由于玻璃内外层有温差造成了,玻璃内外层的应力,因此厚玻璃要加热慢一点,温度低一点,否则因 内外温差太而造成玻璃在炉内破裂。 

b. 继续加热阶段: 玻璃继续加热,玻璃内外层温差缩小等内外层都达到钢化温度时玻璃板内等应力。

相关专题: 原理 钢化玻璃