金属玻璃的用途 金属玻璃详细资料大全
金属玻璃详细资料大全
金属玻璃又称非晶态合金, 它既有金属和玻璃的优点, 又克服了它们各自的弊病.如玻璃易碎, 没有延展性。金属玻璃的强度高于钢, 硬度超过高硬工具钢, 且具有一定的韧性和刚性, 所以, 人们赞扬金属玻璃为“敲不碎、砸不烂”的“玻璃之王”。
基本介绍 中文名 :金属玻璃 外文名 :metal-glass 别称 :非晶态合金 类别 :玻璃 时间 :1960年 简介,发展简史,成分结构,生产工艺,形变, 简介 对科学家来讲,玻璃是任何能从液体冷却成固体而无结晶的材料。大多数金属冷却时就结晶,原子排列成有规则的形式称作晶格。如果不发生结晶并且原子依然排列不规则,就形成金属玻璃。不像玻璃板,金属玻璃不透明或者不发脆,它们罕见的原子结构使它们有着特殊的机械特性及磁力特性。普通金属由于它们晶格的缺陷而容易变形或弯曲导致永久性地失形。对比之下,金属玻璃在变形后更容易弹回至它的初始形状。缺乏结晶的缺陷使得原铁水的金属玻璃成为有效的磁性材料。 金属玻璃是 1960 年被发明的新材料,多年以来被各国科学家广泛而深入地研究。与相应的晶态合金衫没相比,这种材料展现出非常独特的力学与物理性能,使之在多个领域都有广阔的套用前景。同时,金属玻璃作为结构无序材料中一类相对简单的代表体系,是研究非晶态物理的一个比较理想的材料模型。解决金属玻璃中的基本科学问题,比如它的结构表征、形变机理、玻璃转变、玻璃形成能力等,不仅可以促进金属玻璃本身的套用,而且也将推动整个凝聚态物理学的发展。 发展简史 金属玻璃的出现可以追溯到20世纪30年代,Kramer第一次报导用气相沉积法制备出金属玻璃,在1950年,冶金学家学会了通过橘梁混入一定量的金属——诸如镍和锆一去显出结晶体,1960年,美国加州理工学院的Klement和Duwez等人采用急冷技术制备出金属玻璃。当合金的薄层在每秒一百摄氏度的速率下冷却时,它们形成金属玻璃。但因为要求迅速冷却,它们只能制造成很薄的条状物、导线或粉末。 最近,科学家通过混合四到五种不同大小原子的元素,去形成诸如条状的多种多样的金属玻璃。变化原子大小使它混合而形成玻璃从而变得更韧。这些新合金的用途之一是在商业上用来制造高尔夫球棍的头。 成分结构 大部分的金属在冷却时都会结晶,把它们的原子排列成有规则的图案,叫做晶格 。但如果结晶不出现,原子便会随机排列,成为金属玻璃 。 普通玻璃的原子也是随机排列,但它不是金属。金属玻璃并不透明,它拥有独特的机械和磁性特质,不易破碎和不易变形。它是制造变压器、高尔夫球棒和其他产品的理想物料。 目前生产的金属玻璃是较薄和较细的,因为金属冷却时很快便会结晶,所以需要非常快的冷冻。美国约翰斯鹤健士大学的研究员何纳乔,正研究如何生产有超级强力、弹力和磁力特质,但是较为大块的金属玻璃。这种新的金属会保持固体而不会在高温下结晶,这将会适于制造引擎零件及军用武器。 用铁造的金属玻璃是很好的磁性物质,而且由于加热后便变得柔软,容易或伍纳铸造成不同形状的制成品。 图中所见是何纳乔利用感应熔炉 ,很快的将金属混合物溶化,变为金属玻璃 。 金属玻璃科学家 生产工艺 在国家科学基金和美国军队研究总局的支助下,Hufnagel已建立了试验新合金的实验室。他试图创建一种在高温下将依然为固体并不结晶的合金金属玻璃,使它能成为发动机零件有用的材料。该材料也可用于穿甲炮弹等军事场合。不象大多数结晶金属炮弹,在冲击后从平的形状变为蘑菇形状,Hufnagel相信;金属玻璃弹头的各边将转向并给出最好穿透力的削尖射弹。 制造厚的、笨重形状的金属玻璃是困难的,因为大多数金属在冷却时会突然出现结晶现象,制造玻璃,金属必会变硬,因为晶格成形时会改变,从纯金属——诸如铜、镍去创建玻璃,它将以每秒钟一万亿摄氏度的速率下冷却。 形变 传统的晶体材料,其原子周期性地排列成晶格,而晶格又是有缺陷的,如位错、层错等。这些缺陷运动所需要的能量比较低,使晶体的巨观塑性变形比较容易实现。那么对于没有晶格结构的金属玻璃来说,它的塑性形变机理是怎样的呢? 巨观上来看,金属玻璃的形变特征与温度有密切的关系。在温度靠近玻璃转变点乃至更高时,外力的作用下材料每一部分都参与变形,表现为粘滞性流动,被称为均匀变形。在温度远低于玻璃转变点时,金属玻璃则往往表现为非均匀变形,变形区域只集中在很小的区域,其尺度为10~50 nm,这种变形区域被称为剪下带。由于一般金属玻璃的玻璃转变温度点远高于室温,形变局域化是室温下金属玻璃变形的主要特征,并且得到了广泛的关注。高度局域化的形变只发生在剪下带内,剪下带在形成之后在没有约束的条件下就会快速扩展,最终导致材料的脆性断裂。这便是室温下金属玻璃没有巨观塑性的原因,而解决这个问题是促进金属玻璃套用的关键一环,很多研究人员在这个方向上做出了艰苦的努力。为了增加塑性,有的人采用制备复合材料的方法,有人采用引入残余应力或其他加工方法。2007 年,中国科学院物理研究所柳延辉等在《Science》上报导,开发出在室温具有超大压缩塑性的金属玻璃,并且可以像纯铜、纯铝一样弯曲成一定形状,从而进一步引领出一大批相关的研究工作。但是,金属玻璃室温巨观塑性的问题并没有解决,尤其是大家期望的拉伸塑性并没有得到,学术界期待着新的进展。 从微观上来看,形变涉及到材料的局部原子重排。从这个角度来研究形变的起源,目前有两种比较主流的理论模型,分别是“自由体积”模型和“剪下转变区”模型。自由体积模型最初由 Cohen 及 Turnbull 等提出用来解释玻璃转变的问题,后来被 Spaepen 用来理解玻璃的形变。此模型认为金属玻璃的形变是靠单个原子的跃迁运动实现的,并且,每一个原子在任一位置都占有一定比例的自由体积、拥有自由体积多的地方,原子跃迁运动容易实现;拥有自由体积少的地方,原子跃迁运动则不容易实现。在无外力作用的情况下,原子向各个方向跃迁的几率相等,而在有外力作用的条件下,原子则倾向于向某个方向跃迁,从而造成在应力方向上的形变。但是,由于自由体积本身是一个模糊的概念,而且很难想像单个原子的跃迁就能够顺应外界所给的应力,所以,自由体积模型的基础是很不牢靠的。不过,它提供了非常直观的概念去理解形变,而且非常简单,因此,对玻璃领域的工作者具有非常广泛的影响。剪下转变区模型则是一个更加经典和著名的模型,由Argon 等从肥皂泡阀的类比而发展出来。他们认为,金属玻璃的变形在微观上并不是由单个原子的跃迁而导致,而是由好几个原子构成的原子团簇相对于基体的剪下运动所导致,发生这种剪下运动的原子团簇被称为“剪下转变区”,剪下转变区产生的局部塑性变形积累最终导致巨观尺度的形变。基于上述模型,金属玻璃的很多形变现象可以得到解释,如低温下剪下带的局域化、高温下的均匀流变等等。但是,由于剪下转变模型把局域的剪下转变当成单个事件,也就是说这种处理方法忽略了不同形变基本单元之间的相互作用,也造成有一些实验现象它不能作出解释,如应力应变曲线上的锯齿波现象等。最近的研究工作对这种锯齿波行为进行了详细的分析,发现脆性金属玻璃的剪下带动力学具有混沌行为的特点,而韧性金属玻璃可以演化到自组织临界状态。这些结果说明,非晶合金在变形的过程中,其剪下带运动是比较复杂的,需要考虑多重剪下带之间的相互作用以及协同运动。
坡莫合金是个什么材料
坡莫合金是高初磁导率软磁合金
产品特点:具有高或极高的起始磁导率和量大磁导率,极低的矫顽力,较低的饱和磁感。
产品用途:弱磁场中使用的高灵敏度和小型功率变压器、小功率磁放大器、继电器、扼流圈、磁记录装置用磁头、磁屏蔽、各种带绕铁芯、切割铁芯及叠片铁芯。
是高饱和磁感应强度铁钴钒软磁合金,在现有软磁材料中该合金的饱和磁感应强度最高(2.4T),居里点也很高(980℃),饱和磁致伸缩系数最大(60~100×10-6)。由于饱和磁感应强度高,在制作同等功率的电机时,可大大缩小体积,在作电磁铁时,在同样截面积下能产生大的吸合力。由于居里点高,可使该合金能在其他软磁材料已经完全退磁的较高温度下工作,并保持良好的磁稳定性。由于有大的磁致伸缩系数,极适于作磁致伸缩换能器,输出能量高,工作效率也高。该合金电阻率低(0.27μΩ·m),不宜在高频下使用。价格较贵、易氧化、加工性能差,添加适量镍或其他元素,可改善其加工性。
1J85软磁合金
1J79软磁合金
1J50软磁合金
1J46软磁合金
1J36耐蚀软磁合金
1J22铁钴合金
软磁材料,指的是当磁化发生在Hc不大于1000A/m,这样的材料称为软磁体。典型的软磁材料,可以用最小的外磁场实现最大的磁化强度。软磁材料(soft magnetic material)具有低矫顽力和高磁导率的磁性材料。
硬磁材料是指那些难以磁化,且除去外场以后,仍能保留高的剩余磁化强度的材料。硬磁材料的主要用途是制成永磁体,使在一定的空间内产生恒定的磁场. 与电流磁场相比,它所产生的磁场强度稳定、不需要电源、不发热、体积小,因此被广泛应用于仪表、电讯、电力、交通和生活用品。
软磁铁氧体的特点是:饱和磁通密度低,磁导率低,居里温度低,中高频损耗低,成本低。前三个低是它的缺点,限制了它的使用范围,现在(21世纪初)正在努力改进。后两个低是它的优点,有利于进入高频市场,现在(21世纪初)正在努力扩展。
永磁材料是发现和使用都最早的一类磁性材料。我国最早发明的指南器(称为司南)便是利用天然永磁材料磁铁矿制成的。这种材料性能较好,成本较低,不仅可用作电讯器件如录音器、电话机及各种仪表的磁铁,而且已在医学、生物和印刷显示等方面也得到了应用。
具有低矫顽力和高磁导率的磁性材料。软磁材料易于磁化,也易于退磁,广泛用于电工设备和电子设备中。应用最多的软磁材料是铁硅合金(硅钢片)以及各种软磁铁氧体等 。软磁材料种类繁多,通常按成分分为:
①纯铁和低碳钢。含碳量低于0.04%,包括电磁纯铁 、电解铁和羰基铁。其特点是饱和磁化强度高,价格低廉,加工性能好;但其电阻率低、在交变磁场下涡流损耗大,只适于静态下使用,如制造电磁铁芯、极靴、继电器和扬声器磁导体、磁屏蔽罩等。
②铁硅系合金。含硅量 0.5% ~ 4.8%,一般制成薄板使用,俗称硅钢片。在纯铁中加入硅后,可消除磁性材料的磁性随使用时间而变化的现象。随着硅含量增加,热导率降低,脆性增加,饱和磁化强度下降,但其电阻率和磁导率高,矫顽力和涡流损耗减小,从而可应用到交流领域,制造电机、变压器、继让链电器、互感器等的铁芯。
③铁铝系合金 。含铝6%~16%,具有较好的软磁性能,磁导率和电阻率高,硬度高、耐磨性好,但性脆,主要用于制造小型变压器、磁放大器、继电器等的铁芯和磁头、超声换能器等。
④铁硅铝系合金。在二元铁铝合金中加入硅获得。其硬度、饱和磁感应强度、磁导率和电阻率都较高。缺点是磁性能对成分起伏敏感,脆性大,加工性慎晌能差。主要用于音频和视频磁头。
⑤镍铁系合金。镍含量30%~90%,又称坡莫合金,通过合金化元素配比和适当工艺,可控制磁性能,获得高导磁、恒导磁、矩磁等软磁材料。其塑性高,对应力较敏感,可用作脉冲变压器材料、电感铁芯和功能磁性材料。
⑥铁钴系合金。钴含量27%~50%。具有较高的饱和磁化强度,电阻率低。适于制造极靴、电机转子和定子、小型变压器铁芯等。
⑦软磁铁氧体。非金属亚铁磁性软磁材料。电阻率高(10-2~1010Ω·m ),饱和磁坦孝孙化强度比金属低,价格低廉,广泛用作电感元件和变压器元件(见铁氧体)。
⑧非晶态软磁合金。一种无长程有序、无晶粒合金,又称金属玻璃,或称非晶金属。其磁导率和电阻率高,矫顽力小,对应力不敏感,不存在由晶体结构引起的磁晶各向异性,具有耐蚀和高强度等特点。此外,其居里点比晶态软磁材料低得多,电能损耗大为降低,是一种正在开发利用的新型软磁材料。
玻璃之王中的,选文是如何按照逻辑顺序来介绍金属玻璃的请简要说明
1.1.玻璃之王(或金属玻璃,后同)的诞生②玻璃之王形成的原理
③玻璃之王的获得④玻璃之王的应用2.逻辑顺序
3.举例子、列数字、作比较;
具体准确突出地说明了单一的金属液体凝固形成非晶态所需的冷却速度要远远高于其它物质液体。
4.不能删掉。
“可能”表猜测,说明金属玻璃在将来也许会成为磨旁航天、军事及民谈派用领域的理想候选材料,去掉了过于绝对化,与实际不符。
“可能”一词体现了说明文语言的准确性、严密性、科学性。
5.制造高档录音机、录像机的高耐磨音频视频磁头;
制造高压容器、火箭等关瞎侍橡键部!!!!如有雷同,纯属巧合!你是原创